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LONG WAVES IN SHALLOW LIQUID UNDER ICE COVER* 

A.V. MARCHENKO 

Long waves in shallow liquid under ice cover which is under tension or 
compression are studied. An equation describing the propagation of such 
waves is obtained first. Exact solutions of the equation in the form of 
cnoidal waves and solitons axe derived and studied. It is shown that in 
the case of sufficiently low tension and in all cases of compression the 
periodic waves in a shallow liquid are unstable and collapse. 

Waves in a liquid of finite depth under ice cover have been studied 
by many workers in the linear approximation (see e.g. /l, 2/). The 
influence of non-linearity on the propagation of periodic waves and wave 
packets of finite intensity was first studied in /3, 4/, where it was 
shown that periodic waves are unstable in a deep fluid and collapse under 
any compressive-tensile loads acting on the ice cover that may be 
encountered in practice. 

1. Let us consider the motion of a heavy liquid under ice cover, which we shallmodelbya 
thinelasticplate. Thebehaviourofthe plate under the action of external loads is described 
by the equation /S/ 

where q is the deviation of the middle plane of the plate from its equilibrium position, P 
denotes the external load, and pi and h are the density and thickness of the ice. We will 
assume that the ice cover can be under compression-tension along the horizontal x axis, 

characterized by the component of the stress tensor uX. = const. 
The equations of motion of the liquid with boundary conditions at the bottom and under 

the elastic plate are /3, 4/: 

-H<z <rl, q&X i- mlt = 0; z = -H, (pz = 0 0.1) 

z=rl %f%z%=(Pr, 'F1 + '/z('px2 + (Pz2) + grl+ Mrl,,z, - 
Kr),, -t Lllrr=O 

Here m is the velocity potential of the liquid and H is its depth. 
From (1.1) we obtain, in the linear approximation, the following dispersion equation 

connecting the frequency 61 and the wavelength 21th (pw is the density of water) 

ga (L + (k thkiY)-') = g + MkJ $ Kk’, k = h-l (1.2) 

We shall consider the motions for which 

h z 100 m, H =r: 10 m, h N 3 m, E ‘c 3.10* Nm-2 

a rT = IO'- i06 Nm-2 

Within such scales the quantities 

are of the order of lO-3, therefore we can write the dispersion relation (1.2) withanaccuracy 
of up to O(lOss) in the form 

41.3) 

The equation from which the dispersion law (1.3) follows, must have the following form: 
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(1.4) 

It is intexesting to take into account the non-linear corrections to Eq.ll.4) which 
could substantially affect the solution after a fairly long interval and at large distances. 
In order to obtain a non-linear analogue of (1.4), we shall introduce a small parameter e, 
characterizing the non-linear form of the problem: E = aH_', where a is the characteristic 
amplitude of the oscillations of the ice cover. Thus we find that in the non-linear problem 
in question five small dimensionless parameters e, @,7,&p, appear, which may have different 
values depending on the characteristic scales, and may influence the properties of the propa- 
gating waves to a different extent. We shall assume that E* is much smaller thentheremaining 
parameters, i.e. that the characteristic amplitude -a<0,1 m. 

Let us change in (1.1) to dimensionless quantities 

As a result we obtain the following system of equations with boundary conditions (in what 
follows, the primes will be omitted): 

Expanding cp(t,t,z) in a Taylor series in powers of z we obtain, from the Laplace 
equati.on and boundary condition when z = -1, the following expression, using the method of 
successive approximations: 

tpP = -_ILq&K - 'I,&&# (1.6) 
The superscript (") means that the value of the function or its derivatives is taken at 

2 = 0. 
Substitution of (1.6) into the boundary conditions with z=en yields the followingsystem 

of equations with an accuracy up to terms of order 0 (e, pl: 

'PtO -I- rl + ~~,~cpxoa + Y%m - #hxx + %I = 0 (1.7) 

rlt + who + cpk -k %JwE, + wl = 0 

In the zeroth approximation in e, p, y, & & (1.7) yields 

cpt"+q =o, qt + cp& =o (W 

Henceforth, we shall only consider the wave moving to the right, i.e. we shall assume 
that alat =--a/&x fO(e,@). Then we can eliminate 9' from (1.71 and obtain the following equation 
in r): 

rlf + rlr + */ssrlqX + l/lxrlXur + %Yrlurr = 0 (1.9) 
x = ‘/*p + 6 - j-5 = h (a, - u,)Ip~~T” 

Q&l = CgH [PulWf3~f + Pi1 (1.10) 

Let h= 3 m, then H = 5 m and we have 
ax2.10' Nm-2. 

aO% "/,.~O'Nm-2, while when H=Wm,wehave 
The above estimates and (1.10) show that a, can be larger, as well as 

smaller than aor and x can change its sign. We shall later show that this considerably 
affects the properties of the solution of Eq.fl.2). Note that when 
CT,,> 10” Nm-2 holds /&f. 

H>%orn, the inequality 
Therefore in the case of long waves in a liquid much deeper than 

lOm, we can assume that o,<ao and x >O. The characteristic horizontal scale of the 
waves for which the condition &&< 1 holds and the parameter y becomes smaller, increases 
as the depth increases. Therefore we can neglect the elasticity of the ice when considering 
long waves at depths greater than tens of metres. The propagation of such waves will be 
described by the Korteweg-de Vries (KdV) equation. 

2. Let us consider the stationary solutions of (1.9) 

?l(s*4=--I(E), E=x---ct (2.1) 

Substituting 12.1) into (1.9), integrating twice and introducing the following new 
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variables: 

we obtain 
j 55 x, 5’” (E) GE Y (X) 

‘i,y (yy” - ‘i,Y”) $- ‘i,xY - ‘i,&_%? + ‘1, (1 - c) X2 + AX -f 

B = 0, A = const, B = const 

(2.2) 

(2.3) 

We shall seek the solution of (2.3) in the form 

Y = a,X"lg +a,X' + agX'/t + a,X + ah, X > 0, Y > 0 (2.4) 

Substituting (2.4) into (2.3), we obtain the exact solutions in the form 

Y,,,= ~PK,X'J~ - K1X2 - 52Bi(5x) 

eIc,=1_&18, 
169 y A=O, Ko=v& K1=+- 

Y,,,=& ZK,X"*- KrX'f 2,yl/K6 c--co x'I,_+ K,X, 

(2.5) 

(2.6) 

K = lx@ - ‘0) . 
9. 624ye 

B=‘K 2 
8~ a 

Having found Y(X), we can obtain the stationary solutions (2.1). From (2.2) we have 

5'2 = Yi (Q, i = 1, 2, 3, 4 (2.7) 

Eq.(2.7) has solutions of the wave type if the equation Y, (t) F @ (T’ = X) has at 
least three real roots z,> T2>T3. Let Yi (T) > 0 when z, < z <‘zr. Then 5 will vary 
between T1' and 1~'. 

Let YI (E)> 0 when TQ < T < T2. Then 5 will vary between rza and rQt. When i = 3,4 
the solution (2.7) can be expressed in terms of the elliptical Jacobi functions: 

The period g(E) is found from the formula 

B=3&&K(s) 

where K(s) is the complete elliptic integral of the first kind. 
In order for Eq.(2.7) to contain solutions of the unified-wave type, it is necessary that 

conditions B = 0,x < 0 hold for i = 1,2. When i = 3, the condition rl = rz # rQ must 
hold, while for i = 4 we must have the condition r3 = T* # 71. 

Let us write Y,,,(r) in the form 

Y, (T) = 2K, (7 - T$(T - Zs) .(2.9) 

Y, (T) = 2K0 (z - ~$(rr - z) 

Substituting (2.9) into (2.6) we find, that z1 and rQ satisfy the quadratic equations 
whose discriminant is less than zero. Therefore, the unified-wave type equations are possible 
only when the conditions c = cO, B = 0, 'X <0 hold. Substituting (2.5) and (2.6) into (2.7) 
and taking this condition into account we obtain, after integrating, 

GE35 x= -ssech' 
169 ye ((2.10) 

Note that the soliton (2.10) exists only when x < 0. Unlike the solitons of the KdV 
equation, -its amplitude and velocity are strictly defined. Periodic solutions (2.8) exist for 
any sign of x. 

3. Let us consider the zeroth approximation to Eq.(1.9) in e in a coordinate system 
moving with unit velocity. Substituting q = aexpi (kx - cot), into this equation, we obtain 
the dispersion relation 

o = 'I+ kJ - =laykb (3.1) 

which, for x >0, does not contradict the condition for the wave frequenciestobesynchron- 
ized /3/ 

0 (k, + k,) = o (k,) + o (k,) (3.2) 
When Ik, 1 <I/n, h sll,x/y, we can find for every k,, the value 
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k, = -Ask, + l&v/5 1/4h - klP 

for which condition (3.2) will be satisfied identically. The relation between .k, and k, can 
be found graphically. The tip of the vector with coordinates -(k,, jc,) in the (k,, k,), plane, 
satisfying condition (3.2), lies on an ellipse with the centre at the origin of coordinates. 
The major axis of the ellipse is displaced by an angle --n/4 with respect to the k, axis. 
The magnitudes of the major and minor axes are determined from the formulas 
21/z. 

d, I= 2 r/g, d, = 

When the magnitudes of the wave vectors of the resonantly interacting waves are known, 
we can construct the ellipse described above and hence determine the magnitude of the com- 
pression or tension of the ice cover. 

Let us write n in the form 

where the frequencies o (k,) 
resulting equation over 81.8gr 
al 

VI= & a, (et) exp i$ + C. C 

8, = kp - o (k$, k, = k, + k, 

satisfy (3.2). Substituting (3.3) into (1.9) and averaging the 
e 87 we obtain the system of equations for the complex amplitudes 

ia,' = sl,G,a,*aJ, i%' = s’l,k,a,*a, 

ia,’ = ‘I,k,a,%, a,’ E dajld (et) 
(3.4) 

This system has been encountered earlier in other areas of physics /l/, and was first 
applied to waves in a deep liquid under ice in /3/. The solutions (3.4) describe the energy 
transfer between the harmonics el, 8r, 8, over a period of time. 

We can single out the following special feature of this process. 
If, at t = 0, the energy is concentrated in the waves e1 (e,), i.e. if the inequality 

Ia,I>i%,I (IasI>laal,lI) holds at t = 0, then the intensity of the wave BJ will be in- 
significant for any t, since I a, I cannot increase by more than la, Ik,k8-l(l a, Ik&k,-1). Thus 
the energy of a short-wave oscillation cannot increase at the expense of the long-wave oscil- 
lations. 

If at t = 0 the energy was stored mainly within the short wave, i.e. I a, I> I a,,,l, then 
the pattern would become different and a, and ap may increase simultaneously at the expense 
of a8. 

If k = 1/x, then a wave of length nk-’ will be generated with time, and solution (3.4) 
will become 

a, = a, = 1/2;1 I3kch (aet)l-’ 

a, = 2ia th (aet)(3k)-‘, a = const 

When t = 0, we have a, = 0, a, = up = 1/2a (3k)-‘. As t--too, we will have a, = 440, 
a, t 2ia (3k)-‘. Thus we have shown that the periodic solutions of (1.9) are unstable and 
collapse when x>O. 
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